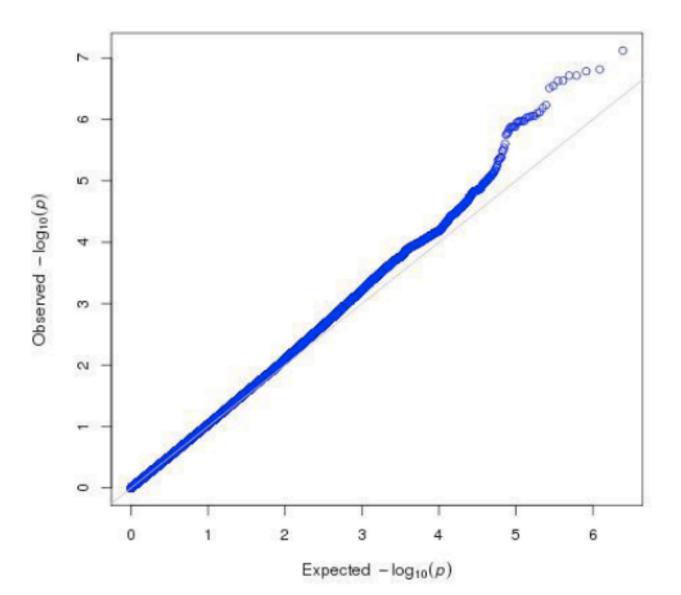
## Getting to Real Data Integration Across -Omics

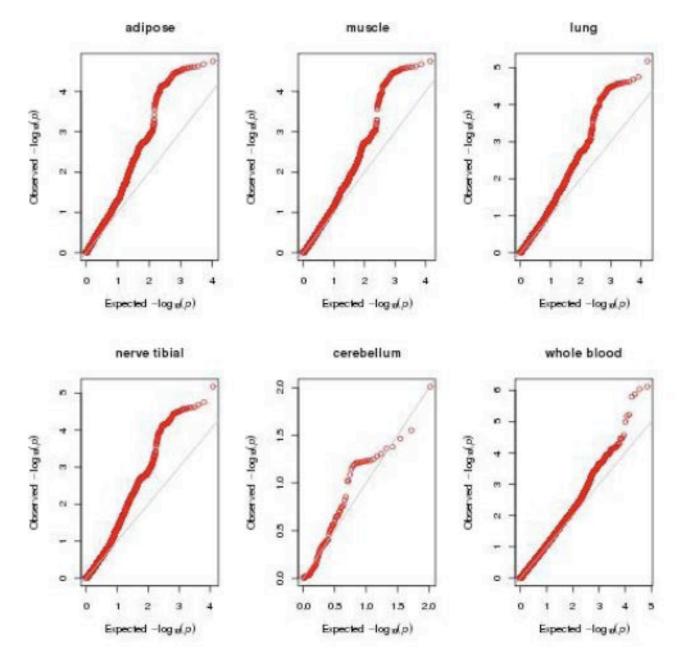


Nancy J. Cox, Ph.D.

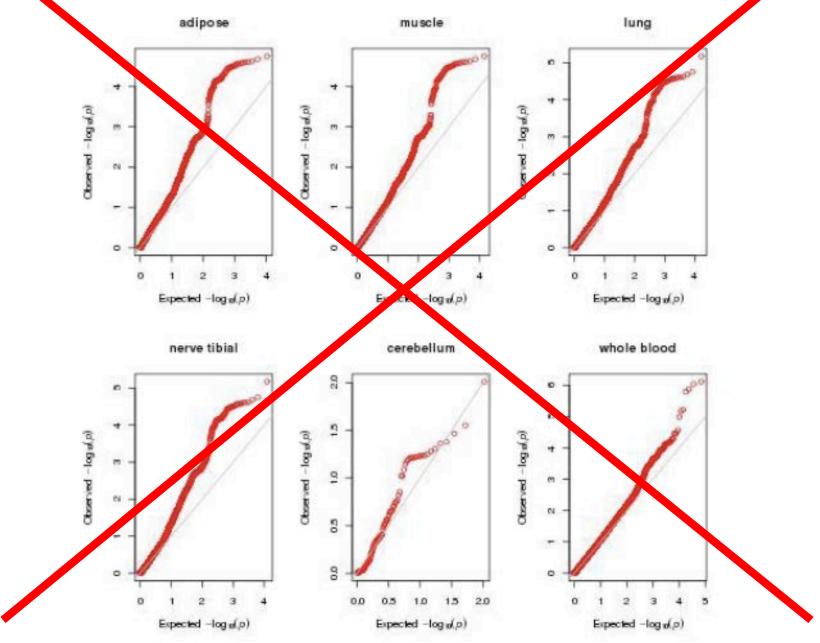




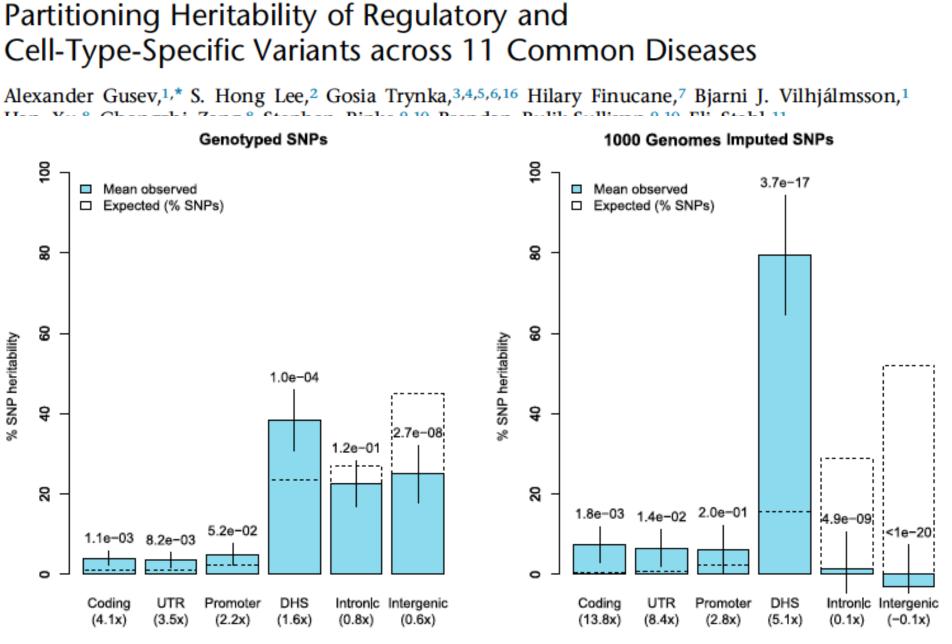

# What Does Real Data Integration Across -Omics Look Like?







# MAGIC: HOMA-IR (all SNPs)

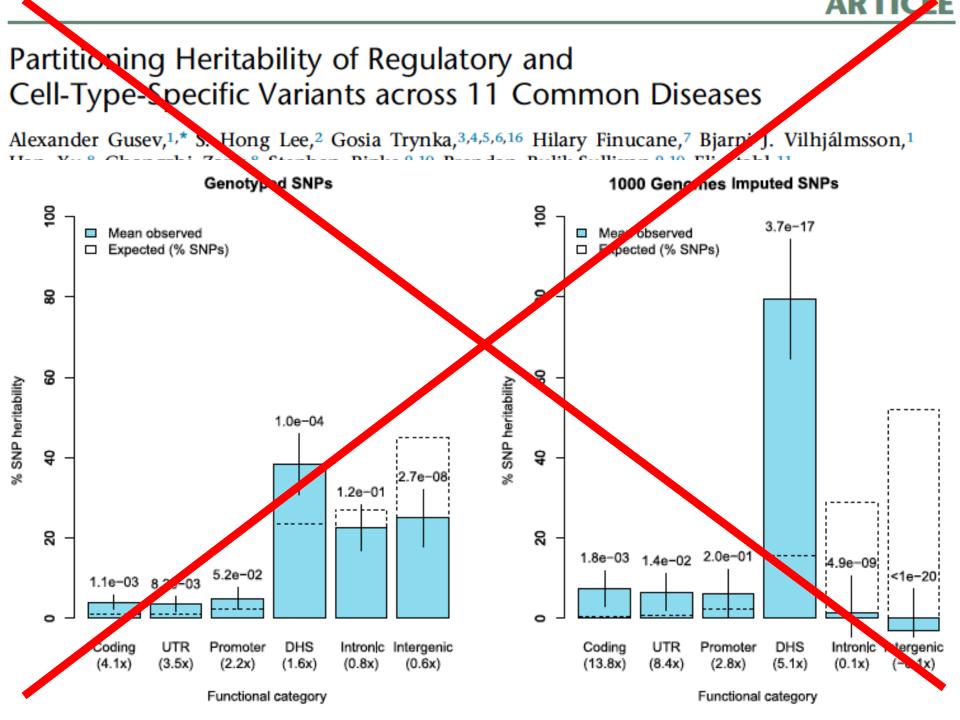



# MAGIC: HOMA-IR



# MAGIC: HOMA-IR




| Type 1 Diabete |             |       | )S | S Crohns Disease |           |       |  |
|----------------|-------------|-------|----|------------------|-----------|-------|--|
|                | V(G)/V(P) 5 | SE    |    |                  | V(G)/V(P) | SE    |  |
| adipose        | 0.21        | 0.019 |    |                  | 0.03      | 0.008 |  |
| heart          | 0.199       | 0.02  |    |                  | 0.017     | 0.006 |  |
| lung           | 0.192       | 0.018 |    |                  | 0.02      | 0.007 |  |
| muscle         | 0.188       | 0.018 |    |                  | 0.028     | 0.008 |  |
| nerve<br>whole | 0.191       | 0.018 |    |                  | 0.025     | 0.008 |  |
| blood          | 0.187       | 0.023 |    |                  | 0.17      | 0.024 |  |
| Overall        | 0.48        | 0.06  |    |                  | 0.50      | 0.07  |  |



Functional category

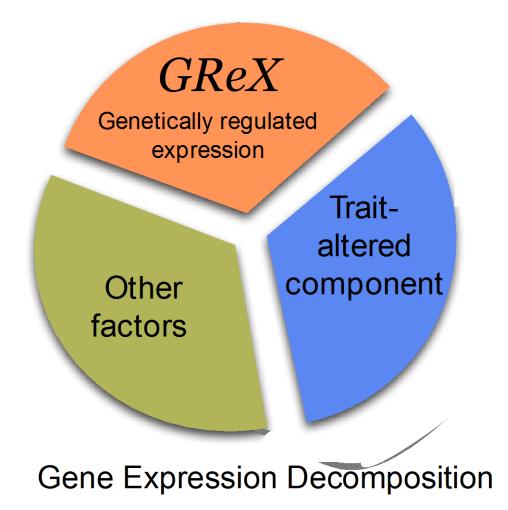
Functional category

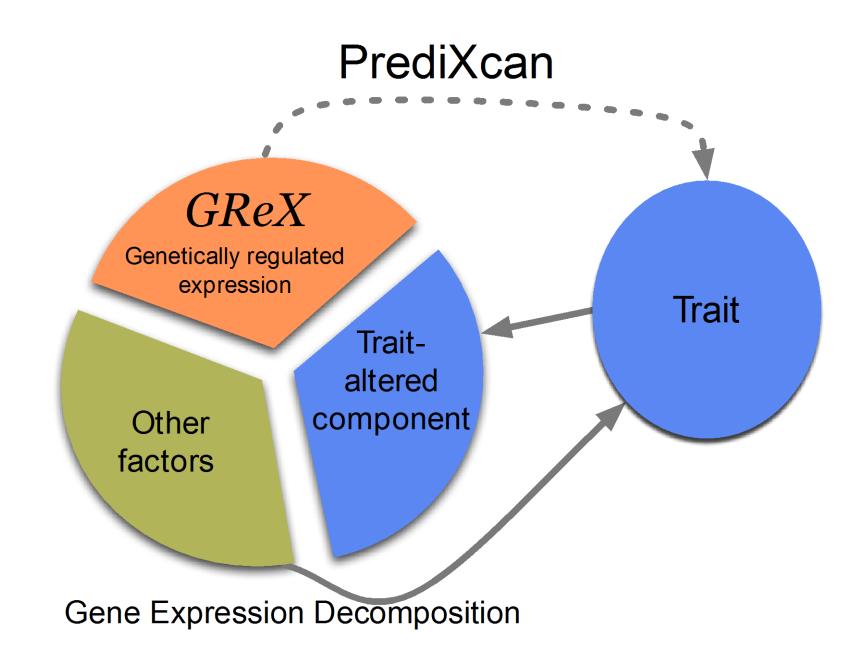
|                | Type 1 Diabetes |       |          | Crohns Disease |           |       |
|----------------|-----------------|-------|----------|----------------|-----------|-------|
|                | V(G)/V(P) :     | SE    |          |                | V(G)/\(P) | SE    |
| adipose        | 0.21            | 0.019 |          |                | 0.03      | 0.008 |
| heart          | 0.199           | 0.02  |          |                | 0.017     | 0.006 |
| lung           | 0.192           | 0.018 | $\times$ |                | 0.02      | 0.007 |
| muscle         | 0.188           | 9.018 |          |                | 0.028     | 0.008 |
| nerve          | 0.191           | 0.018 |          |                | 0.025     | 0.008 |
| whole<br>blood | 0.187           | 0.023 |          |                | 0.17      | 0.024 |
| Overall        | 0.48            | 0.06  |          |                | 0.50      | 0.87  |

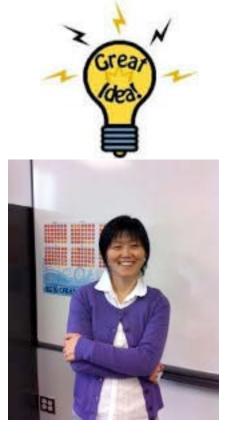


# A Missing Data Problem?

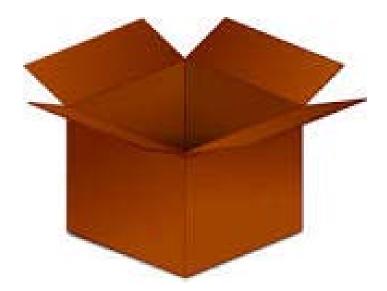
### • What we want to know:


– What are the genes, the mechanisms, and the direction of effects?


### • What we have:

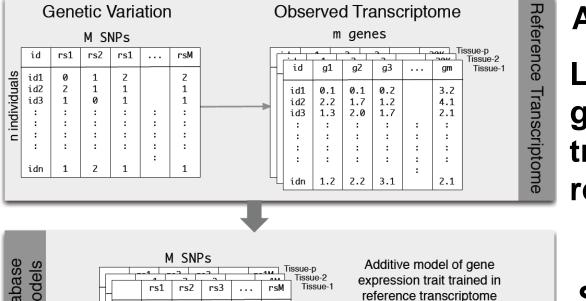

 Knowledge that transcriptome regulation drives much of common variant heritability, and we have measurement of genome and transcriptome variation in many tissues (GTEx) and large samples

# A Missing Data Problem?


- If we believe that genome variation affects risk of common disease largely through transcript regulation, why not use what information we have to look directly at that endophenotype?
- That is test the association of genetically regulated transcript levels with disease








# PrediXcan



Haky Im

#### **Revision at Nat Genet as GTEx companion paper**



w1M

w2M

w3M

:

datasets

genes

g1

g2

g3

w11

w21

w31

:

w12

w22

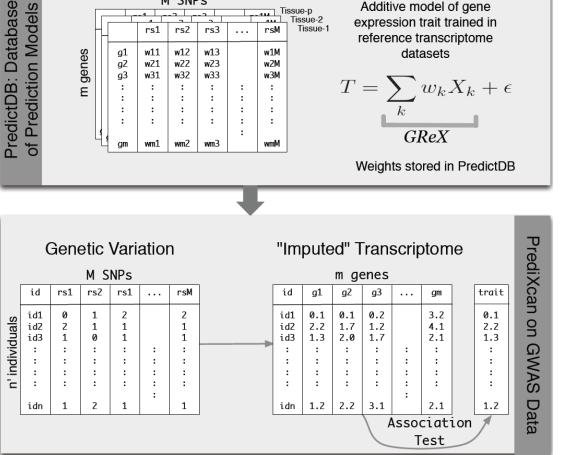
w32

:

w13

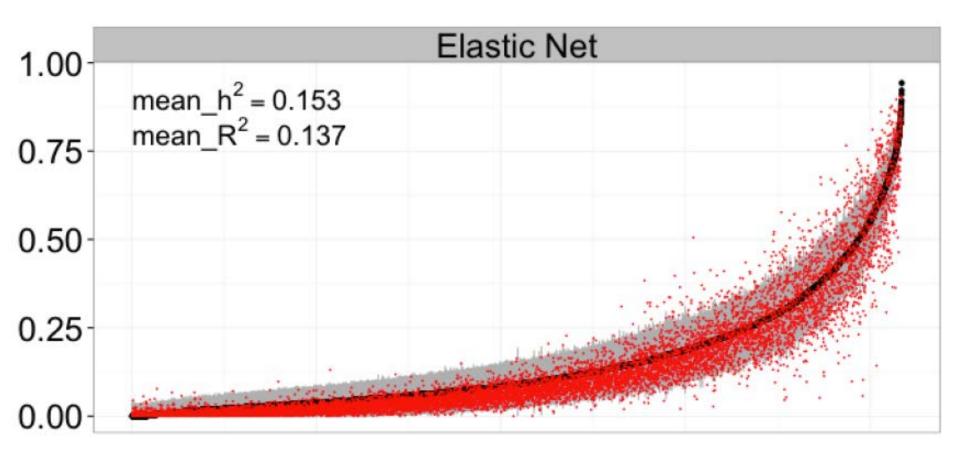
w23

w33


:

:

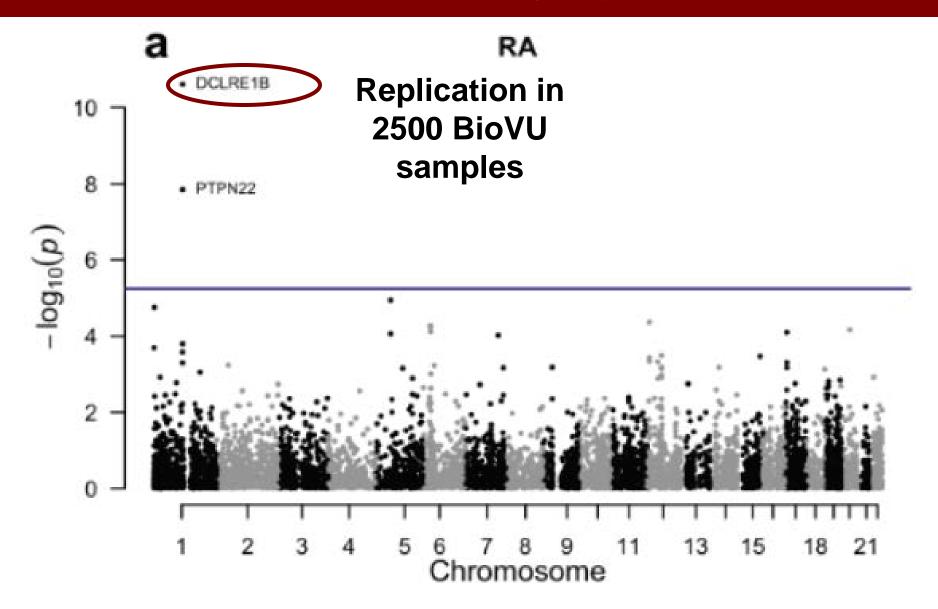
#### Analogous to Imputation


Learn relationship of genome variation to transcriptome in reference sample (GTEx)

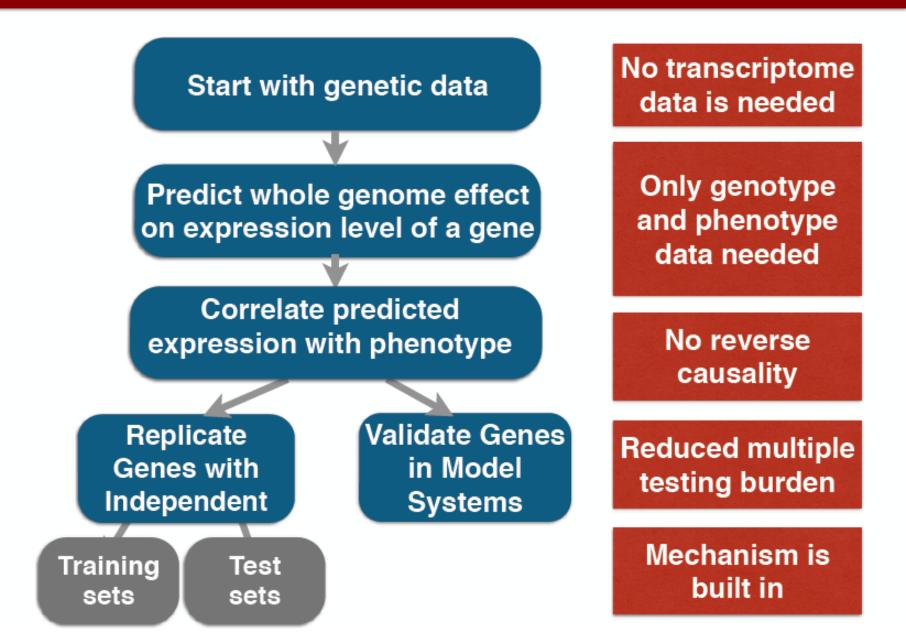
Store weights from prediction equations

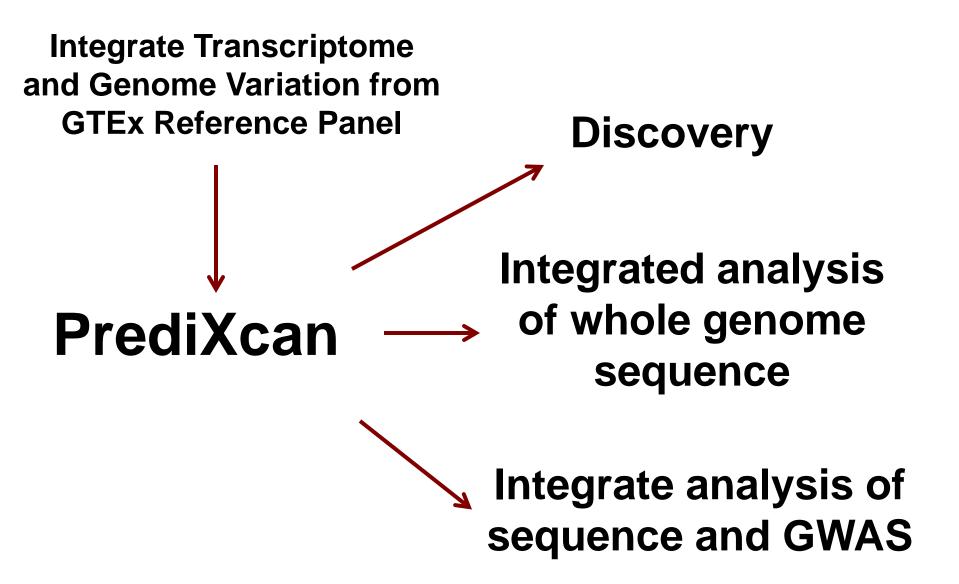


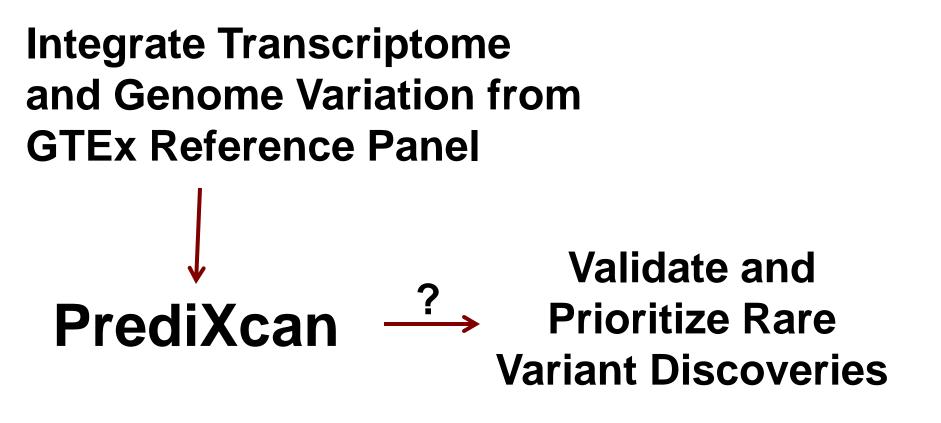
Apply to any dataset with genome interrogation


### **Prediction Performance R<sup>2</sup> by Heritability**




### **Prediction in an Independent Sample**


- Significance of correlation between predicted and directly measured expression levels: qvalue < 0.05 for 40-50% of genes, < 0.1 for 60-70%
- 80% of genes have correlation between predicted and measured expression > 0.1, 50% > 0.2
- Polygenic prediction < {lasso, elastic net} genetic architecture


#### Rheumatoid Arthritis (RA) in WTCCC



#### PrediXcan Flow

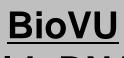






# Requires Further Integration with a "Phenome" Reference Panel

### Integrate Transcriptome and Genome Variation from GTEx Reference Panel

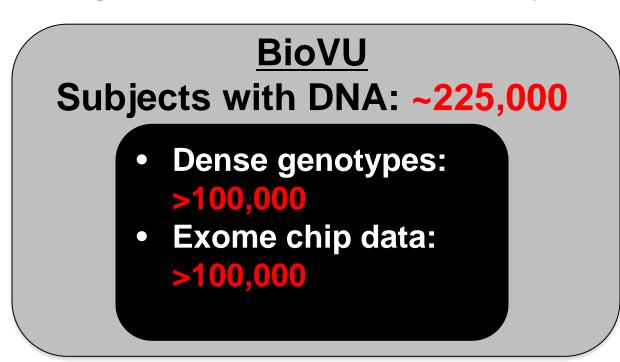

# PrediXcan

### Validate and Prioritize Rare Variant Discoveries

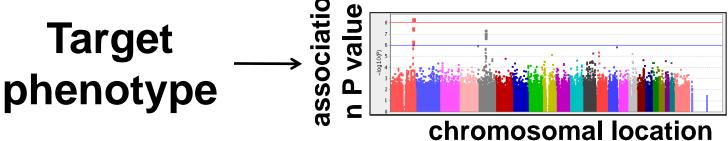
#### Integration with a "Phenome" Reference Panel

# Resources for EMR-based research at Vanderbilt

#### <u>The Synthetic Derivative</u> A de-identified and continuously-updated image of the EMR: 2,358,760 subjects

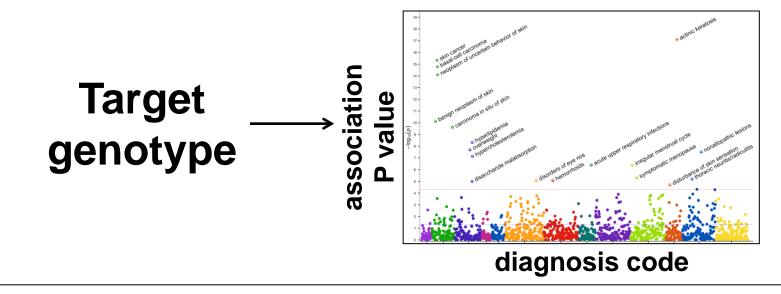



Subjects with DNA: >200,000


- Dense (GWAS-level) genotypes: ~20,000
- genotypes: ~20,000
- Exome chip data: 42,000

# Resources for EMR-based research at Vanderbilt ... end 2015

<u>The Synthetic Derivative</u> A de-identified and continuously-updated image of the EMR: 2,500,000 subjects




## The genome-wide association study



chromosomar location

The phenome-wide association study



PheWAS <u>requirement</u>: A large cohort of patients with genotype data and many diagnoses



An Engine Enabling Basic Discovery Science

 Test with PrediXcan the association of predicted gene expression with EMR phenotypes (gene-based PheWAS)



An Engine Enabling Basic Discovery Science

 Test with PrediXcan the association of predicted gene expression with EMR phenotypes (gene-based PheWAS)

### A "Phenome" Reference Panel!

Volume 155 Number 1

September 26, 2013

www.cell.com

A Nondegenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk Blair DR, Lyttle CS, Mortensen JM, Bearden CF, Jensen AB, Khiabanian H, Melamed

R, Rabadan R, Bernstam EV, Brunak S, Jensen LJ, Nicolae D, Shah NH, Grossman RL, Cox NJ, White KP, Rzhetsky A

### **Continuum from Mendelian to Complex**

#### Continuum from LOF to deleterious to J expression

# What Phenotypes Are Associated with Reduced GReX of Mendelian Genes?

# PrediXcan X BioVU

- Preliminary studies on those genes in which all SNPs included in the prediction equation are included in the Illumina 1M SNP set (~5000 BioVU subjects)
- Studies completed for whole blood (built in >900 from DGN) and cardiac tissue (built from > 300 in GTEx)
- 125 genes

# PrediXcan in BioVU for PEX19

- Mutations in *PEX19* lead to a peroxisomal biogenesis disorder, Zellweger Syndrome spectrum of Mendelian phenotypes
  - Hypotonic, seizures, bony stippling at the patella and other long bones, kidney and liver cysts, coagulopathies, stone formation and renal failure
  - What BioVU phenotypes are associated with reduced GReX of *PEX19*?

### Reduced GReX of PEX19

|               | 758    | Chromosomal anomalies, genetic disorders   | 27   | 0.000179 |
|---------------|--------|--------------------------------------------|------|----------|
|               | 401.2  | Hypertensive heart and/or renal disease    | 1137 | 0.00473  |
|               | 401.22 | Hypertensive chronic kidney disease        | 823  | 0.0064   |
|               | 110.13 | Dermatophytosis of the body                | 28   | 0.0065   |
|               | 458.1  | Orthostatic hypotension                    | 141  | 0.0109   |
|               | 345.1  | Epilepsy                                   | 148  | 0.0111   |
|               | 587    | Kidney replaced by transplant              | 696  | 0.0122   |
|               | 443.1  | Raynaud's syndrome                         | 26   | 0.0136   |
|               | 701.4  | Keloid scar                                | 21   | 0.0161   |
| $\rightarrow$ | 275.5  | Disorders of calcium/phosphorus metabolism | 428  | 0.0174   |
| $\rightarrow$ | 252.1  | Hyperparathyroidism                        | 89   | 0.0177   |
|               | 585.32 | End stage renal disease                    | 516  | 0.0263   |
|               | 585.3  | Chronic renal failure [CKD]                | 1235 | 0.0273   |
| $\rightarrow$ | 252    | Disorders of parathyroid gland             | 103  | 0.0277   |
|               | 720    | Spinal stenosis                            | 299  | 0.0309   |
|               | 353.2  | Nerve root lesions                         | 26   | 0.0314   |
|               | 800.4  | Fracture of patella                        | 49   | 0.0315   |
|               | 345.12 | Partial epilepsy                           | 81   | 0.0386   |
|               | 420    | Carditis                                   | 261  | 0.0401   |
|               | 531.2  | Gastric ulcer                              | 81   | 0.0441   |
|               | 345    | Epilepsy, recurrent seizures, convulsions  | 424  | 0.0483   |
|               | 411.41 | Aneurysm and dissection of heart           | 25   | 0.0487   |
|               |        |                                            |      |          |

### Increased GReX PEX19

| 170.2  | Cancer of connective tissue                            | 120 | 0.00128 |
|--------|--------------------------------------------------------|-----|---------|
| 170    | Cancer of bone and connective tissue                   | 170 | 0.00219 |
| 371.3  | Inflammation of eyelids                                | 118 | 0.00397 |
| 781    | Symptoms involving nervous and musculoskeletal systems | 55  | 0.00759 |
| 198.1  | Secondary malignancy of lymph nodes                    | 268 | 0.00833 |
|        | Need for Hormone replacement therapy                   |     |         |
| 627.22 | (postmenopausal)                                       | 25  | 0.00868 |
| 287.32 | Secondary thrombocytopenia                             | 144 | 0.0107  |
| 371    | Inflammation of the eye                                | 237 | 0.0117  |
| 290.13 | Senile dementia                                        | 24  | 0.015   |
| 174.1  | Breast cancer [female]                                 | 189 | 0.0168  |
| 90     | Sexually transmitted infections (not HIV or hepatitis) | 20  | 0.018   |
| 174.11 | Malignant neoplasm of female breast                    | 187 | 0.0199  |
| 759    | Other and unspecified congenital anomalies             | 54  | 0.021   |
| 277.7  | Dysmetabolic syndrome X                                | 40  | 0.0214  |
| 174    | Breast cancer                                          | 208 | 0.024   |
| 170.1  | Bone cancer                                            | 103 | 0.0257  |
| 772.1  | Muscular wasting and disuse atrophy                    | 20  | 0.0269  |
| 352.2  | Facial nerve disorders [CN7]                           | 36  | 0.0314  |
| 228.1  | Hemangioma of skin and subcutaneous tissue             | 23  | 0.0382  |
| 611.3  | Lump or mass in breast                                 | 156 | 0.0403  |
| 426.2  | Atrioventricular [AV] block                            | 269 | 0.0406  |
| 627.2  | Symptomatic menopause                                  | 235 | 0.0409  |
| 442.11 | Abdominal aortic aneurysm                              | 105 | 0.0421  |
| 352    | Disorders of other cranial nerves                      | 79  | 0.0474  |
|        |                                                        |     |         |

# **PrediXcan in BioVU for TK2**

- TK2-related mitochondrial DNA depletion syndrome, myopathic form (TK2-MDS) is an inherited condition that causes progressive muscle weakness (myopathy).
- The signs and symptoms of TK2-MDS typically begin in early childhood. Development is usually normal early in life, but as muscle weakness progresses, people with TK2-MDS lose motor skills such as standing, walking, eating, and talking. Some affected individuals have increasing weakness in the muscles that control eye movement, leading to droopy eyelids (progressive external ophthalmoplegia).
- Study in Finland noted increase in fractures. Due to increase in falls caused by myopathy? Bones weak?

#### **Reduced Predicted Expression** *TK***2**

| 728.1  | Muscular calcification and ossification               | 21  | 0.00734 |
|--------|-------------------------------------------------------|-----|---------|
| 990    | Effects radiation NOS                                 | 72  | 0.00861 |
| 496.1  | Emphysema                                             | 163 | 0.0097  |
| 872    | Traumatic amputation                                  | 38  | 0.0127  |
| 800.3  | Fracture of tibia and fibula                          | 145 | 0.0182  |
| 807    | Fracture of ribs                                      | 118 | 0.0202  |
| 809    | Fracture of unspecified bones                         | 287 | 0.0207  |
| 733    | Other disorders of bone and cartilage                 | 218 | 0.0235  |
| 596.5  | Functional disorders of bladder                       | 164 | 0.0252  |
| 374.3  | Ptosis of eyelid                                      | 50  | 0.0314  |
| 800    | Fracture of lower limb                                | 375 | 0.0318  |
| 627.21 | Symptomatic artificial menopause                      | 29  | 0.0325  |
| 962    | Poisoning by hormones and synthetic substitutes       | 87  | 0.0372  |
| 819    | Skull and face fracture and other intercranial injury | 130 | 0.0378  |
|        | Hx of malignant neoplasm of oral cavity and           |     |         |
| 149.5  | pharynx                                               | 58  | 0.04    |
| 716.9  | Arthropathy NOS                                       | 402 | 0.0407  |
| 800.2  | Fracture of unspecified part of femur                 | 111 | 0.0422  |
| 196    | Radiotherapy                                          | 123 | 0.0436  |
| 716    | Other arthropathies                                   | 418 | 0.0488  |
|        |                                                       |     |         |

### **Increased Predicted Expression** *TK***2**

| 270     | Disorders of protein plasma/amino-acid transport and metabolism | 180  | 1.50E-05  |
|---------|-----------------------------------------------------------------|------|-----------|
| ( 270.3 | Disorders of plasma protein metabolism                          | 152  | 1.00E-04  |
| 270.32  | Paraproteinemia                                                 | 98   | 0.00147   |
| 270.38  | Other specified disorders of plasma protein metabolism          | 40   | 0.00261   |
| 550.6   | Incisional hernia                                               | 149  | 0.00314   |
| 286.8   | Hypercoagulable state                                           | 79   | 0.00316   |
| 204.4   | Multiple myeloma                                                | 125  | > 0.00527 |
| 510.2   | Lung transplant                                                 | 59   | 0.00574   |
| 480     | Pneumonia                                                       | 1311 | 0.00646   |
|         |                                                                 |      |           |

# Does Altered Expression of Mendelian Disease Genes Contribute Disproportionately to Common Disease?

If Reduced GReX of Mendelian Genes Is Associated with Components of Mendelian Disease, Can't We ...

- Test genes implicated in sequencing studies on rare disorders for phenotypes associated with GReX
  - "Undiagnoses Disease" sequencing often yields
    6-12 genes at which LOF or deleterious mutations
    could be causing disease; prioritize and validate
- Test genes implicated in sequencing studies on common diseases that fail to meet genome-wide criteria
- "Predict" new Mendelian diseases

### Increased Predicted Expression CCKBR cholecystokinin B receptor

| 575    | Other biliary tract disease                         | 176 | 1.66E-05 |
|--------|-----------------------------------------------------|-----|----------|
| 411.8  | Other chronic ischemic heart disease, unspecified   | 567 | 0.000915 |
| 575.8  | Other disorders of biliary tract                    | 98  | 0.00115  |
| 513    | Respiratory abnormalities                           | 424 | 0.00228  |
| 362.26 | Macular puckering of retina                         | 62  | 0.00232  |
| 593    | Hematuria                                           | 476 | 0.00375  |
| → 297  | Suicidal ideation or attempt                        | 50  | 0.00391  |
| 70.3   | Viral hepatitis C                                   | 135 | 0.00415  |
| 70     | Viral hepatitis                                     | 225 | 0.00459  |
| 204.12 | Lymphoid leukemia, chronic                          | 67  | 0.00608  |
| 362.2  | Degeneration of macula and posterior pole of retina | 193 | 0.00663  |
| →297.1 | Suicidal ideation                                   | 25  | 0.00671  |
| 594    | Urinary calculus                                    | 320 | 0.007    |
| 573    | Other disorders of liver                            | 802 | 0.00701  |
| →300.9 | Posttraumatic stress disorder                       | 78  | 0.00954  |
|        |                                                     |     |          |

#### CCKBR is a receptor for regulatory peptides of the brain and gastrointestinal tract

### **Increased Predicted Expression GRIK5**

| 361    | Retinal detachments and defects                  | 54   | 0.000629 |
|--------|--------------------------------------------------|------|----------|
| 366    | Cataract                                         | 629  | 0.000642 |
| 365    | Glaucoma                                         | 219  | 0.00105  |
| 379    | Other disorders of eye                           | 233  | 0.00131  |
| 250.6  | Polyneuropathy in diabetes                       | 276  | 0.0014   |
| 365.11 | Primary open angle glaucoma                      | 72   | 0.00153  |
| 365.1  | Open-angle glaucoma                              | 150  | 0.00226  |
| 79     | Viral infection                                  | 246  | 0.00379  |
| 627    | Menopausal and postmenopausal disorders          | 365  | 0.00401  |
| 250.3  | Insulin pump user                                | 449  | 0.00422  |
| 530.1  | Esophagitis, GERD and related diseases           | 1408 | 0.00455  |
| 366.2  | Senile cataract                                  | 530  | 0.00507  |
| 627.2  | Symptomatic menopause                            | 235  | 0.0052   |
| 476    | Allergic rhinitis                                | 527  | 0.00525  |
| 379.2  | Disorders of vitreous body                       | 188  | 0.00627  |
| 530    | Diseases of esophagus                            | 1551 | 0.00636  |
|        | Thoracic or lumbosacral neuritis or radiculitis, |      |          |
| 763    | unspecified                                      | 134  | 0.00649  |
| 362    | Other retinal disorders                          | 321  | 0.00739  |
| 613    | Other nonmalignant breast conditions             | 99   | 0.00752  |
| 577.3  | Cyst and pseudocyst of pancreas                  | 40   | 0.00756  |
| 530.11 | GERD                                             | 1268 | 0.00812  |
| 514.2  | Solitary pulmonary nodule                        | 20   | 0.00831  |
|        |                                                  |      |          |

An Eye Super **Gene?** 

#### **Reduced Predicted Expression ST6GALNAC4**

| → 295                                     | Schizophrenia and other psychotic disorders          | 145 | 0.000174 |
|-------------------------------------------|------------------------------------------------------|-----|----------|
| <del>2</del> 95.3                         | Psychosis                                            | 119 | 0.000257 |
| ────> <b>343</b>                          | Infantile cerebral palsy                             | 32  | 0.000573 |
| <del>2</del> 92.5                         | Transient alteration of awareness                    | 25  | 0.0016   |
| ───> 242                                  | Thyrotoxicosis with or without goiter                | 121 | 0.00165  |
| 381.1                                     | Otitis media                                         | 141 | 0.00312  |
| → 264                                     | Lack of normal physiological development             | 254 | 0.00353  |
| 381.11                                    | Suppurative and unspecified otitis media             | 112 | 0.00379  |
| 291.8                                     | Alteration of consciousness                          | 489 | 0.00495  |
| >                                         | Other specified nonpsychotic and/or transient mental |     |          |
| 291                                       | disorders                                            | 502 | 0.00578  |
| <u> </u> €64.2                            | Failure to thrive                                    | 210 | 0.00676  |
| 175                                       | Acquired absence of breast                           | 50  | 0.00897  |
| 381                                       | Otitis media and Eustachian tube disorders           | 243 | 0.0109   |
| → 303                                     | Psychogenic and somatoform disorders                 | 44  | 0.0187   |
| → 320                                     | Meningitis                                           | 66  | 0.0192   |
| 601.1                                     | Prostatitis                                          | 50  | 0.0221   |
| <del>──────────────────────────────</del> | Epilepsy                                             | 148 | 0.0273   |
| 174.11                                    | Malignant neoplasm of female breast                  | 187 | 0.0274   |
|                                           |                                                      |     |          |

#### Results on 125 genes in 5000 individuals

### Results on all genes in 20,000

# **Results in 100,000+**



An Engine Enabling Basic Discovery Science

- Conduct systematic evaluation of animal model knock-out phenotypes with human
- Test predicted expression of genes targeted by drugs for phenotypes related to ADRs

#### **Our GTEx Team**









Dan Nicolae

Lin Chen

Lea Davis (&Bridget) Richard Jones



**Eric Gamazon** 









Younghee Lee

Hae Kyung "Haky" Im

Anuar Konkashbaev Barbara Stranger



# Acknowledgements

#### The GTEx Consortium Investigators (GTEx Pilot phase)

#### cancer Human Biobank (caHUB)

#### Biospecimen Source Sites (BSS)

John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, National Disease Research Interchange, Philadelphia, PA

Richard Hasz, Gift of Life Donor Program, Philadelphia, PA

Gary Walters, LifeNet Health, Virginia Beach, VA

Nancy Young, Albert Einstein Medical Center, Philadelphia, PA

Laura Siminoff (ELSI Study), Heather Traino, Maghboeba Mosavel, Laura Barker, Virginia Commonwealth University, Richmond, VA

Barbara Foster, Mike Moser, Ellen Karasik, Bryan Gillard, Kimberley Ramsey, Roswell Park

Cancer Institute, Buffalo, NY

Susan Sullivan, Jason Bridge, Upstate New York Transplant Service, Buffalo, NY

#### Comprehensive Biospecimen Resource (CBR)

Scott Jewell, Dan Rohr, Dan Maxim, Dana Filkins, Philip Harbach, Eddie Cortadillo, Bree Berghuis, Lisa Turner, Melissa Hanson, Anthony Watkins, Brian Smith, Van Andel Institute, Grand Rapids, MI

#### Pathology Resource Center (PRC)

Leslie Sobin, James Robb, SAIC-Frederick, Inc., Frederick, MD

Phillip Branton, National Cancer Institute, Bethesda, MD

John Madden, Duke University, Durham, NC

Jim Robb, Mary Kennedy, College of American Pathologists, Northfield, IL

#### Comprehensive Data Resource (CDR)

Greg Korzeniewski, Charles Shive, Liqun Qi, David Tabor, Sreenath Nampally, SAIC-Frederick, Inc., Frederick, MD

#### caHUB Operations Management

Steve Buia, Angela Britton, Anna Smith, Karna Robinson, Robin Burges, Karna Robinson, Kim Valentino, Deborah Bradbury, *SAIC-Frederick, Inc., Frederick, MD* Kenyon Erickson, *Sapient Government Services, Arlington, VA* 

#### Brain Bank

Deborah Mash, PI; Yvonne Marcus, Margaret Basile University of Miami School of Medicine, Miami, FL

#### Laboratory, Data Analysis, and Coordinating Center (LDACC)

Kristin Ardlie, Gad Getz, co-PIs; David DeLuca, Taylor Young, Ellen Gelfand, Tim Sullivan, Yan Meng, Ayellet Segre, Jules Maller, Pouya Kheradpour, Luke Ward, Daniel MacArthur, Manolis Kellis, *The Broad Institute of Harvard and MIT, Inc., Cambridge, MA* 

#### **Statistical Methods Development (R01)**

Jun Liu, co-PI, Harvard University, Boston, MA, USA

Jun Zhu, co-PI; Zhidong Tu, Bin Zhang, *Mt Sinai School of Medicine, New York, NY* Nancy Cox, Dan Nicolae, co-PIs; Eric Gamazon, Haky Im, Anuar Konkashbaev, *University of Chicago, Chicago, IL* 

Jonathan Pritchard, PI; Matthew Stevens, Timothèe Flutre, Xiaoquan Wen, University of Chicago, Chicago, IL

Emmanouil T. Dermitzakis, co-PI; Tuuli Lappalainen, Pedro Ferreira, University of Geneva, Geneva, Switzerland

Roderic Guigo, co-PI; Jean Monlong, Michael Sammeth, Center for Genomic Regulaton, Barcelona, Spain

Daphne Koller, co-PI; Alexis Battle, Sara Mostafavi, *Stanford University, Palo Alto, CA* Mark McCarthy, co-PI; Manuel Rivas, Andrew Morris, *Oxford University, Oxford, United Kingdom* Ivan Rusyn, Andrew Nobel, Fred Wright, Co-PIs; Andrey Shabalin, *University of North Carolina* -*Chapel Hill, Chapel Hill, NC* 

#### **US National Institutes of Health**

#### NCBI dbGaP

Mike Feolo, Steve Sherry, Jim Ostell, Nataliya Sharopova, Anne Sturcke, National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD

#### Program Management

Leslie Derr, Office of Strategic Coordination (Common Fund), Office of the Director, National Institutes of Health, Bethesda, MD

Eric Green, Jeffery P. Struewing, Simona Volpi, Joy Boyer, Deborah Colantuoni, National Human Genome Research Institute, Bethesda, MD

Thomas Insel, Susan Koester, A. Roger Little, Patrick Bender, Thomas Lehner, National Institute of Mental Health, Bethesda, MD

Jim Vaught, Sherry Sawyer, Nicole Lockhart, Chana Rabiner, Joanne Demchok, National Cancer Institute, Bethesda, MD